Silver Lake Publishing

Main Menu

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management

Silver Lake Publishing

Header Banner

Silver Lake Publishing

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management
Poly-lateral
Home›Poly-lateral›A naturally inspired antibiotic to target multidrug-resistant pathogens

A naturally inspired antibiotic to target multidrug-resistant pathogens

By Allen Rodriquez
January 5, 2022
14
0


  • 1.

    Ventola, CL The antibiotic resistance crisis: part 1: causes and threats. TP 40, 277-283 (2015).

    PubMed PubMed Central Google Scholar

  • 2.

    Payne, DJ, Gwynn, MN, Holmes, DJ & Pompliano, DL Insect Pest Drugs: Addressing the Challenges of Antibacterial Discovery. Nat. Rev. Drug Discov. 6, 29-40 (2007).

    Google Scholar CAS Article

  • 3.

    Deveson Lucas, D. et al. Emergence of high-level resistance to colistin in a Acinetobacter baumannii clinical isolate mediated by inactivation of the global regulator H-NS. Antimicrobial. Chemother Agents. 62, e02442-17 (2018).

    Google Scholar article

  • 4.

    Aitolo, GL, Adeyemi, OS, Afolabi, BL & Owolabi, AO Neisseria gonorrhoeae antimicrobial resistance: from past to present to future. Court. Microbiole. 78, 867-878 (2021).

    Google Scholar CAS Article

  • 5.

    Tacconelli, E. et al. Discovery, research and development of new antibiotics: the WHO priority list of bacteria resistant to antibiotics and tuberculosis. Infect the lancet. Say. 18, 318-327 (2018).

    Google Scholar article

  • 6.

    Imai, Y. et al. New antibiotic selectively kills Gram-negative pathogens. Nature 576, 459-464 (2019).

    ADS CAS Google Scholar Article

  • seven.

    Biswas, S., Brunel, JM, Dubus, JC, Reynaud-Gaubert, M. & Rolain, JM Colistin: an update on the antibiotic of the 21st century. Expert Rev. Anti Infect. The. ten, 917-934 (2012).

    Google Scholar CAS Article

  • 8.

    Liu, YY et al. Emergence of the mechanism of resistance to MCR-1 plasmid-mediated colistin in animals and humans in China: a microbiological and molecular biological study. Infect the lancet. Say. 16, 161-168 (2016).

    Google Scholar article

  • 9.

    Jeannot, K., Bolard, A. & Plesiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 49, 526-535 (2017).

    Google Scholar CAS Article

  • ten.

    Liu, YY et al. Structural modification of lipopolysaccharide conferred by mcr-1 in Gram-negative ESKAPE pathogens. Antimicrobial. Chemother Agents. 61, e00580-17 (2017).

    PubMed PubMed Central Google Scholar

  • 11.

    Schwarz, S. & Johnson, AP Transferable resistance to colistin: a new but old threat. J. Antimicrob. Chemmere. 71, 2066-2070 (2016).

    Google Scholar article

  • 12.

    Hameed, F. et al. Plasmid mediated mcr-1 gene in Acinetobacter baumannii and Pseudomonas aeruginosa: Pakistan’s first report. Rev. Soc. Arm. Med. Too much. 52, e20190237 (2019).

    Google Scholar article

  • 13.

    Tian, ​​GB et al. MCR-1 production Klebsiella pneumoniae epidemic in China. Infect the lancet. Say. 17, 577 (2017).

    Google Scholar article

  • 14.

    Rutledge, PJ & Challis, GL Discovery of natural microbial products by activation of groups of silent biosynthetic genes. Nat. Rev. Microbiol. 13, 509-523 (2015).

    Google Scholar CAS Article

  • 15.

    Sussmuth, RD & Mainz, A. Synthesis of non-ribosomal peptides – principles and perspectives. Angew. Chem. Int. Ed. English 56, 3770-3821 (2017).

    Google Scholar article

  • 16.

    Stachelhaus, T., Mootz, HD & Marahiel, MA The code conferring the specificity of adenylation domains in non-ribosomal peptide synthetases. Chem. Biol. 6, 493-505 (1999).

    Google Scholar CAS Article

  • 17.

    Rabanal, F. & Cajal, Y. Advances and recent perspectives in the design and development of polymyxins. Nat. Prod. representing 34, 886-908 (2017).

    Google Scholar CAS Article

  • 18.

    Li, J., Nation, R. & Kaye, K. (eds) Polymyxin Antibiotics: From the Lab Bench to the Preface at the Bedside 1145, V – VI (Springer, 2019).

  • 19.

    Tomm, HA, Ucciferri, L. & Ross, AC Advances in microbial culture conditions to activate clusters of silent biosynthetic genes for the production of new metabolites. J. Ind. Microbiol. Biotechnology. 46, 1381-1400 (2019).

    Google Scholar CAS Article

  • 20.

    Chu, J. et al. Discovery of antibiotics active against MRSA using the primary sequence of the human microbiome. Nat. Chem. Biol. 12, 1004–1006 (2016).

    Google Scholar CAS Article

  • 21.

    Chu, J., Vila-Farres, X. & Brady, SF Cyclic peptides from bioactive synthetic and bioinformatics natural products inspired by non-ribosomal peptide synthetase gene clusters of the human microbiome. Jam. Chem. Soc. 141, 15737-15741 (2019).

    Google Scholar CAS Article

  • 22.

    Chu, J. et al. Antibiotics natural synthetic-bioinformatics products with various modes of action. Jam. Chem. Soc. 142, 14158–14168 (2020).

    Google Scholar CAS Article

  • 23.

    Kang, KN et al. Heteroresistance to colistin in Enterobacter cloacae is regulated by the addition of PhoPQ-dependent 4-amino-4-deoxy-1-arabinose to lipid A. Mol. Microbiole. 111, 1604-1616 (2019).

    Google Scholar CAS Article

  • 24.

    McClerren, AL et al. A slow and tightly binding inhibitor of zinc-dependent LpxC deacetylase of lipid A biosynthesis with antibiotic activity comparable to that of ciprofloxacin. Biochemistry 44, 16574-16583 (2005).

    Google Scholar CAS Article

  • 25.

    Moffatt, JH et al. Colistin resistance in Acinetobacter baumannii is mediated by a complete loss of lipopolysaccharide production. Antimicrobial. Chemother Agents. 54, 4971-4977 (2010).

    Google Scholar CAS Article

  • 26.

    Wei, J.-R. et al. LpxK is essential for the growth of Acinetobacter baumannii ATCC 19606: relationship with toxic accumulation of intermediates of the lipid pathway A. mSphere 2, e00199-00117 (2017).

    Google Scholar CAS Article

  • 27.

    Richie, DL et al. The toxic accumulation of LPS pathway intermediates underlies the requirement of LpxH for the growth of Acinetobacter baumannii ATCC 19606. PLoS A 11, e0160918 (2016).

    Google Scholar article

  • 28.

    US Department of Health and Human Services. Threats of antibiotic resistance in the United States; https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (2019).

  • 29.

    Ling, Z. et al. Epidemiology of mobile colistin resistance genes mcr-1 at mcr-9. J. Antimicrob. Chemmere. 75, 3087-3095 (2020).

    Google Scholar CAS Article

  • 30.

    Sakura, N. et al. The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity. Taurus. Chem. Soc. Japan 77, 1915-1924 (2004).

    Google Scholar CAS Article

  • 31.

    Tsubery, H., Ofek, I., Cohen, S. & Fridkin, M. N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity. Peptides 22, 1675-1681 (2001).

    Google Scholar CAS Article

  • 32.

    Lutgring, JD et al. FDA-CDC Antimicrobial Resistance Isolate Bank: A publicly available resource to support research, development, and regulatory requirements. J. Clin. Microbiole. 56, e01415-17 (2018).

    PubMed PubMed Central Google Scholar

  • 33.

    Devarajan, P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand. J. Clin. Laboratory. Invest. Suppl. 241, 89-94 (2008).

    Google Scholar article

  • 34.

    Wang, J., Ishfaq, M., Fan, Q., Chen, C. & Li, J. 7-hydroxycoumarin attenuates colistin-induced kidney damage in mice by decreasing the level of histone deacetylase 1 and activation of the Nrf2 signaling pathway. Front. Pharmacol. 11, 1146 (2020).

    Google Scholar CAS Article

  • 35.

    Bolignano, D. et al. Lipocalin associated with neutrophil gelatinase (NGAL) as a marker of kidney damage. A m. J. Rein Dis. 52, 595-605 (2008).

    Google Scholar CAS Article

  • 36.

    Blin, K. et al. The antiSMASH version 2 database: a comprehensive resource on secondary metabolite biosynthetic gene clusters. Nucleic acids Res. 47, D625 – D630 (2019).

    Google Scholar CAS Article

  • 37.

    Blin, K. et al. antiSMASH 5.0: Updates to the secondary metabolite genome extraction pipeline. Nucleic acids Res. 47, S81 – S87 (2019).

    Google Scholar CAS Article

  • 38.

    Tests, ECOAS Recommendations for the determination of the MIC of colistin (polymyxin E) recommended by the joint CLSI-EUCAST working group on polymyxin breakpoints (EUCAST, 2016).

  • 39.

    Wikler, MA Antimicrobial Susceptibility Testing Dilution Methods for Aerobic Growing Bacteria: Approved Standard. CLSI document M07-A7 (2006).

  • 40.

    Bojkovic, J. et al. Characterization of a Acinetobacter baumannii LptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J. Bacteriol. 198, 731-741 (2015).

    Google Scholar article

  • 41.

    Carmichael, J., DeGraff, WG, Gazdar, AF, Minna, JD & Mitchell, JB Evaluation of a semi-automated colorimetric tetrazolium test: evaluation of chemosensitivity tests. Cancer Res. 47, 936-942 (1987).

    Google School CAS PubMed Fellow


  • Related posts:

    1. World Biosurgery Market Evaluation and Forecast (2018-2024) – The Courier
    2. International Biosurgery Market Evaluation and Forecast (2018-2024) – The Courier
    3. EEC 2028 facial injectable market technological innovation, traits and prime gamers – SoccerNurds
    4. REI launches Footwear: Traverse and Flash climbing boots overview
    Tagsunited states

    Categories

    • Complete information
    • Money Management
    • Poly-lateral
    • Price-Specie-Flow Mechanism
    • Swap
    • TERMS AND CONDITIONS
    • PRIVACY AND POLICY