Silver Lake Publishing

Main Menu

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management

Silver Lake Publishing

Header Banner

Silver Lake Publishing

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management
Poly-lateral
Home›Poly-lateral›High frequency, intrinsically scalable polymer diodes

High frequency, intrinsically scalable polymer diodes

By Allen Rodriquez
December 8, 2021
23
0


  • 1.

    Sim, K. et al. Epicardial bioelectronic patch made from flexible rubbery materials and capable of mapping electrophysiological activity in space-time. Nat. Electron. 3, 775-784 (2020).

    CAS Google Scholar

  • 2.

    Wang, S. et al. Skin electronics resulting from the evolutionary fabrication of an intrinsically expandable transistor network. Nature 555, 83-88 (2018).

    Google School CAS PubMed Fellow

  • 3.

    Miyamoto, A. et al. Electronic on the skin without inflammation, gas permeable, lightweight and stretchable with nanomeshes. Nat. Nanotechnology. 12, 907-913 (2017).

    Google School CAS PubMed Fellow

  • 4.

    Kim, D.-H. et al. Epidermal electronics. Science 333, 838-843 (2011).

    Google School CAS PubMed Fellow

  • 5.

    Zheng, Y. et al. Monolithic optical microlithography of high density elastic circuits. Science 373, 88-94 (2021).

    Google School CAS PubMed Fellow

  • 6.

    Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer electroluminescent devices and screens. Nat. Photon. 7, 817-824 (2013).

    CAS Google Scholar

  • 7.

    Kim, H., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from inherently stretchable elastomeric composites of semiconductors and conductors. Sci. Av. 3, e1701114 (2017).

    PubMed PubMed Central Google Scholar

  • 8.

    Kim, J.-H. & Park, J.-W. Inherently scalable organic light emitting diodes. Sci. Av.7, eabd9715 (2021).

    CAS PubMed PubMed Central Google Scholar

  • 9.

    Wang, Z. et al. Inherently scalable organic solar cells beyond 10% power conversion efficiency through the transfer printing method. Av. Function. Check out. 31, 2103534 (2021).

    CAS Google Scholar

  • ten.

    Noh, J. et al. Intrinsically expandable organic solar cells with efficiencies of over 11%. ACS Energy Lett. 6, 2512-2518 (2021).

    CAS Google Scholar

  • 11.

    Kaltenbrunner, M. et al. Ultra-light design for invisible plastic electronics. Nature 499, 458-463 (2013).

    Google School CAS PubMed Fellow

  • 12.

    Minev, IR et al. The electronic dura for long-term multimodal neural interfaces. Science 347, 159-163 (2015).

    Google School CAS PubMed Fellow

  • 13.

    Khodagholy, D. et al. NeuroGrid: recording of action potentials on the surface of the brain. Nat. Neurosks. 18, 310-315 (2015).

    Google School CAS PubMed Fellow

  • 14.

    Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures towards soft electronics. Av. Mater. 30, 1801368 (2018).

    Google Scholar

  • 15.

    Kim, D.-H. et al. Soluble silk fibroin films for ultra-fine compliant bio-integrated electronics. Nat. Check out. 9, 511-517 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 16.

    Gao, W. et al. Fully integrated portable sensor networks for multiplexed in situ transpiration analysis. Nature 529, 509-514 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 17.

    Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Tower. 48, 2946-2966 (2019).

    Google School CAS PubMed Fellow

  • 18.

    Wang, S., Oh, JY, Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033-1045 (2018).

    Google School CAS PubMed Fellow

  • 19.

    Kim, H., Thukral, A., Sharma, S. & Yu, C. Fully elastic biaxially expandable transistors based on rubbery semiconductor nanocomposites. Av. Mater. Technol. 3, 1800043 (2018).

    Google Scholar

  • 20.

    Sim, K. et al. Fully rubbery integrated electronics from intrinsically stretchable high mobility semiconductors. Sci. Av. 5, 14 (2019).

    Google Scholar

  • 21.

    Niu, S. et al. A wireless body zone sensor network based on expandable passive tags. Nat. Electron. 2, 361-368 (2019).

    Google Scholar

  • 22.

    Huang, Z. et al. Expandable electronics integrated in three dimensions. Nat. Electron. 1, 473-480 (2018).

    Google Scholar

  • 23.

    Bandodkar, AJ et al. Battery-less skin interface microfluidic / electronic systems for simultaneous electrochemical, colorimetric and volumetric analysis of sweat. Sci. Av. 5, 587 (2019).

    Google Scholar

  • 24.

    Steudel, S. et al. Comparison of organic diode structures regarding high frequency rectification behavior in radio frequency identification tags. J. Appl. Phys. 99, 114519 (2006).

    Google Scholar

  • 25.

    Viola, FA et al. A 13.56 MHz rectifier based on organic diodes entirely printed by inkjet. Av. Mater. 32, 2002329 (2020).

    CAS Google Scholar

  • 26.

    Higgins, SG, Agostinelli, T., Markham, S., Whiteman, R. & Sirringhaus, H. Organic diode rectifiers based on a high performance conjugated polymer for a near field energy recovery circuit. Av. Mater. 29, 1703782 (2017).

    Google Scholar

  • 27.

    Zhou, X., Yang, D. & Ma, D. Extremely low dark current, high sensitivity, full polymer photodetectors with spectral response from 300nm to 1000nm. Av. Opt. Check out. 3, 1570-1576 (2015).

    CAS Google Scholar

  • 28.

    Huang, J. et al. A high performance solution treated organic photodetector for near infrared detection. Av. Mater. 32, 1906027 (2020).

    CAS Google Scholar

  • 29.

    Heljo, PS, Schmidt, C., Klengel, R., Majumdar, HS & Lupo, D. Electrical and thermal analysis of frequency dependent filament switching in printed rectifier diodes. Org. Electron. 20, 69-75 (2015).

    CAS Google Scholar

  • 30.

    Bose, I., Tetzner, K., Borner, K. & Bock, K. Amorphous, air stable, high current density, solution treatable organic rectifying diodes (ORDs) for low cost manufacturing flexible low frequency passive RFID tags. Microelectron. Reliab. 54, 1643-1647 (2014).

    CAS Google Scholar

  • 31.

    Lee, Y. et al. Autonomous real-time health monitoring patch based on an expandable organic optoelectronic system. Sci. Av. 7, eabg9180 (2021).

    CAS PubMed PubMed Central Google Scholar

  • 32.

    Gao, H., Chen, S., Liang, J. & Pei, Q. Elastomeric electroluminescent polymer enhanced by interpenetrating networks. ACS Appl. Check out. Interfaces 8, 32504-32511 (2016).

    Google School CAS PubMed Fellow

  • 33.

    Li, L. et al. Intrinsically expandable solid state polymer solar cell. ACS Appl. Check out. Interfaces 9, 40523-40532 (2017).

    Google School CAS PubMed Fellow

  • 34.

    Hsieh, YT et al. Realization of intrinsically scalable organic solar cells through the engineering of charge extraction layer and photoactive materials. ACS Appl. Check out. Interfaces ten, 21712-21720 (2018).

    Google School CAS PubMed Fellow

  • 35.

    Liu, N. et al. Ultra-transparent and expandable graphene electrodes. Sci. Av. 3, e1700159 (2017).

    PubMed PubMed Central Google Scholar

  • 36.

    Matsuhisa, N. et al. High transconductance extensible transistors obtained by controlled morphology of gold microcracks. Av. Électron. Check out. 5, 1900347 (2019).

    Google Scholar

  • 37.

    Zhou, Y. et al. A universal method for producing low work electrodes for organic electronics. Science 336, 327-332 (2012).

    Google School CAS PubMed Fellow

  • 38.

    Wang, Y. et al. A highly stretchable, transparent and conductive polymer. Sci. Av. 3, e1602076 (2017).

    PubMed PubMed Central Google Scholar

  • 39.

    Lipomi, DJ, Tee, BC-K., Vosgueritchian, M. & Bao, Z. Expandable organic solar cells. Av. Mater. 23, 1771-1775 (2011).

    Google School CAS PubMed Fellow

  • 40.

    Steudel, S. et al. 50 MHz rectifier based on an organic diode. Nat. Check out. 4, 597-600 (2005).

    Google School CAS PubMed Fellow

  • 41.

    Kang, C. et al. 1 GHz pentacene diode rectifiers activated by controlled film deposition on SAM-treated Au anodes. Av. Électron. Check out. 2, 1500282 (2016).

    Google Scholar

  • 42.

    Matsuhisa, N. et al. A mechanically durable and flexible organic rectifier diode with an ethoxylated polyethyleneimine cathode. Av. Électron. Check out. 2, 1600259 (2016).

    Google Scholar

  • 43.

    Borchert, JW et al. Low voltage and high frequency flexible organic thin film transistors. Sci. Av. 6, 1–9 (2020).

  • 44.

    Yamamura, A. et al. Wafer scale, layer controlled organic single crystals for high speed circuit operation. Sci. Av. 4, 21 (2018).

    Google Scholar

  • 45.

    Wang, X. et al. Spatio-temporal bioelectromagnetic controlled by conformable liquid metal printed e-skin for wireless multisite tumor therapy. Av. Function. Check out. 29, 1907063 (2019).

    CAS Google Scholar

  • 46.

    Liu, Z. et al. Thickness gradient films for expandable high gauge factor strain sensors. Av. Mater. 27, 6230-6237 (2015).

    Google School CAS PubMed Fellow

  • 47.

    JK O’Neill, S. et al. A flexible carbon flower based pressure sensor made from a large area coating. Av. Mater. Interfaces 7, 2000875 (2020).

    Google Scholar

  • 48.

    Jeon, J., Lee, H.-B.-R. & Bao, Z. Flexible wireless temperature sensors based on binary polymer composites filled with Ni microparticles. Av. Mater. 25, 850-855 (2013).

    Google School CAS PubMed Fellow

  • 49.

    Wang, C. et al. Small quinoid molecules based on thiophene-diketopyrrolopyrrole as organic semiconductors processable in solution and stable in air: adjustment of the length and branching position of the alkyl side chain towards an organic field effect transfer to high performance n channel. ACS Appl. Check out. Interfaces 7, 15978-15987 (2015).

    Google School CAS PubMed Fellow

  • 50.

    Ito, Y. et al. Ultra-smooth crystalline self-assembled monolayers of alkylsilanes for organic field-effect transistors. Jam. Chem. Soc. 131, 9396-9404 (2009).

    Google School CAS PubMed Fellow

  • 51.

    Tahk, D., Lee, HH & Khang, D.-Y. Elastic modules of organic electronic materials by the buckling method. Macromolecules 42, 7079-7083 (2009).

    CAS Google Scholar

  • 52.

    Kawahara, J., Ersman, PA, Engquist, I. & Berggren, M. Color switch contrast enhancement in electrochromic displays PEDOT: PSS. Org. Electron. 13, 469-474 (2012).

    CAS Google Scholar


  • Related posts:

    1. Tech & Science Daily: Hackers Surprisingly Return $ 260 Million In Crypto After Huge Online Heist
    2. Scientists reverse key feature of motor neuron disease in the lab – sciencedaily
    3. AJ McKee says his time has come against Patricio Pitbull – Orange County Register
    4. Yellow vests bitten by engineers – École Polytechnique
    Tagslong term

    Categories

    • Complete information
    • Money Management
    • Poly-lateral
    • Price-Specie-Flow Mechanism
    • Swap
    • TERMS AND CONDITIONS
    • PRIVACY AND POLICY