High frequency, intrinsically scalable polymer diodes

Sim, K. et al. Epicardial bioelectronic patch made from flexible rubbery materials and capable of mapping electrophysiological activity in space-time. Nat. Electron. 3, 775-784 (2020).
Wang, S. et al. Skin electronics resulting from the evolutionary fabrication of an intrinsically expandable transistor network. Nature 555, 83-88 (2018).
Miyamoto, A. et al. Electronic on the skin without inflammation, gas permeable, lightweight and stretchable with nanomeshes. Nat. Nanotechnology. 12, 907-913 (2017).
Kim, D.-H. et al. Epidermal electronics. Science 333, 838-843 (2011).
Zheng, Y. et al. Monolithic optical microlithography of high density elastic circuits. Science 373, 88-94 (2021).
Liang, J., Li, L., Niu, X., Yu, Z. & Pei, Q. Elastomeric polymer electroluminescent devices and screens. Nat. Photon. 7, 817-824 (2013).
Kim, H., Sim, K., Thukral, A. & Yu, C. Rubbery electronics and sensors from inherently stretchable elastomeric composites of semiconductors and conductors. Sci. Av. 3, e1701114 (2017).
Kim, J.-H. & Park, J.-W. Inherently scalable organic light emitting diodes. Sci. Av.7, eabd9715 (2021).
Wang, Z. et al. Inherently scalable organic solar cells beyond 10% power conversion efficiency through the transfer printing method. Av. Function. Check out. 31, 2103534 (2021).
Noh, J. et al. Intrinsically expandable organic solar cells with efficiencies of over 11%. ACS Energy Lett. 6, 2512-2518 (2021).
Kaltenbrunner, M. et al. Ultra-light design for invisible plastic electronics. Nature 499, 458-463 (2013).
Minev, IR et al. The electronic dura for long-term multimodal neural interfaces. Science 347, 159-163 (2015).
Khodagholy, D. et al. NeuroGrid: recording of action potentials on the surface of the brain. Nat. Neurosks. 18, 310-315 (2015).
Wang, C., Wang, C., Huang, Z. & Xu, S. Materials and structures towards soft electronics. Av. Mater. 30, 1801368 (2018).
Google Scholar
Kim, D.-H. et al. Soluble silk fibroin films for ultra-fine compliant bio-integrated electronics. Nat. Check out. 9, 511-517 (2010).
Gao, W. et al. Fully integrated portable sensor networks for multiplexed in situ transpiration analysis. Nature 529, 509-514 (2016).
Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Tower. 48, 2946-2966 (2019).
Wang, S., Oh, JY, Xu, J., Tran, H. & Bao, Z. Skin-inspired electronics: an emerging paradigm. Acc. Chem. Res. 51, 1033-1045 (2018).
Kim, H., Thukral, A., Sharma, S. & Yu, C. Fully elastic biaxially expandable transistors based on rubbery semiconductor nanocomposites. Av. Mater. Technol. 3, 1800043 (2018).
Google Scholar
Sim, K. et al. Fully rubbery integrated electronics from intrinsically stretchable high mobility semiconductors. Sci. Av. 5, 14 (2019).
Google Scholar
Niu, S. et al. A wireless body zone sensor network based on expandable passive tags. Nat. Electron. 2, 361-368 (2019).
Google Scholar
Huang, Z. et al. Expandable electronics integrated in three dimensions. Nat. Electron. 1, 473-480 (2018).
Google Scholar
Bandodkar, AJ et al. Battery-less skin interface microfluidic / electronic systems for simultaneous electrochemical, colorimetric and volumetric analysis of sweat. Sci. Av. 5, 587 (2019).
Google Scholar
Steudel, S. et al. Comparison of organic diode structures regarding high frequency rectification behavior in radio frequency identification tags. J. Appl. Phys. 99, 114519 (2006).
Google Scholar
Viola, FA et al. A 13.56 MHz rectifier based on organic diodes entirely printed by inkjet. Av. Mater. 32, 2002329 (2020).
Higgins, SG, Agostinelli, T., Markham, S., Whiteman, R. & Sirringhaus, H. Organic diode rectifiers based on a high performance conjugated polymer for a near field energy recovery circuit. Av. Mater. 29, 1703782 (2017).
Google Scholar
Zhou, X., Yang, D. & Ma, D. Extremely low dark current, high sensitivity, full polymer photodetectors with spectral response from 300nm to 1000nm. Av. Opt. Check out. 3, 1570-1576 (2015).
Huang, J. et al. A high performance solution treated organic photodetector for near infrared detection. Av. Mater. 32, 1906027 (2020).
Heljo, PS, Schmidt, C., Klengel, R., Majumdar, HS & Lupo, D. Electrical and thermal analysis of frequency dependent filament switching in printed rectifier diodes. Org. Electron. 20, 69-75 (2015).
Bose, I., Tetzner, K., Borner, K. & Bock, K. Amorphous, air stable, high current density, solution treatable organic rectifying diodes (ORDs) for low cost manufacturing flexible low frequency passive RFID tags. Microelectron. Reliab. 54, 1643-1647 (2014).
Lee, Y. et al. Autonomous real-time health monitoring patch based on an expandable organic optoelectronic system. Sci. Av. 7, eabg9180 (2021).
Gao, H., Chen, S., Liang, J. & Pei, Q. Elastomeric electroluminescent polymer enhanced by interpenetrating networks. ACS Appl. Check out. Interfaces 8, 32504-32511 (2016).
Li, L. et al. Intrinsically expandable solid state polymer solar cell. ACS Appl. Check out. Interfaces 9, 40523-40532 (2017).
Hsieh, YT et al. Realization of intrinsically scalable organic solar cells through the engineering of charge extraction layer and photoactive materials. ACS Appl. Check out. Interfaces ten, 21712-21720 (2018).
Liu, N. et al. Ultra-transparent and expandable graphene electrodes. Sci. Av. 3, e1700159 (2017).
Matsuhisa, N. et al. High transconductance extensible transistors obtained by controlled morphology of gold microcracks. Av. Ãlectron. Check out. 5, 1900347 (2019).
Google Scholar
Zhou, Y. et al. A universal method for producing low work electrodes for organic electronics. Science 336, 327-332 (2012).
Wang, Y. et al. A highly stretchable, transparent and conductive polymer. Sci. Av. 3, e1602076 (2017).
Lipomi, DJ, Tee, BC-K., Vosgueritchian, M. & Bao, Z. Expandable organic solar cells. Av. Mater. 23, 1771-1775 (2011).
Steudel, S. et al. 50 MHz rectifier based on an organic diode. Nat. Check out. 4, 597-600 (2005).
Kang, C. et al. 1 GHz pentacene diode rectifiers activated by controlled film deposition on SAM-treated Au anodes. Av. Ãlectron. Check out. 2, 1500282 (2016).
Google Scholar
Matsuhisa, N. et al. A mechanically durable and flexible organic rectifier diode with an ethoxylated polyethyleneimine cathode. Av. Ãlectron. Check out. 2, 1600259 (2016).
Google Scholar
Borchert, JW et al. Low voltage and high frequency flexible organic thin film transistors. Sci. Av. 6, 1â9 (2020).
Yamamura, A. et al. Wafer scale, layer controlled organic single crystals for high speed circuit operation. Sci. Av. 4, 21 (2018).
Google Scholar
Wang, X. et al. Spatio-temporal bioelectromagnetic controlled by conformable liquid metal printed e-skin for wireless multisite tumor therapy. Av. Function. Check out. 29, 1907063 (2019).
Liu, Z. et al. Thickness gradient films for expandable high gauge factor strain sensors. Av. Mater. 27, 6230-6237 (2015).
JK O’Neill, S. et al. A flexible carbon flower based pressure sensor made from a large area coating. Av. Mater. Interfaces 7, 2000875 (2020).
Google Scholar
Jeon, J., Lee, H.-B.-R. & Bao, Z. Flexible wireless temperature sensors based on binary polymer composites filled with Ni microparticles. Av. Mater. 25, 850-855 (2013).
Wang, C. et al. Small quinoid molecules based on thiophene-diketopyrrolopyrrole as organic semiconductors processable in solution and stable in air: adjustment of the length and branching position of the alkyl side chain towards an organic field effect transfer to high performance n channel. ACS Appl. Check out. Interfaces 7, 15978-15987 (2015).
Ito, Y. et al. Ultra-smooth crystalline self-assembled monolayers of alkylsilanes for organic field-effect transistors. Jam. Chem. Soc. 131, 9396-9404 (2009).
Tahk, D., Lee, HH & Khang, D.-Y. Elastic modules of organic electronic materials by the buckling method. Macromolecules 42, 7079-7083 (2009).
Kawahara, J., Ersman, PA, Engquist, I. & Berggren, M. Color switch contrast enhancement in electrochromic displays PEDOT: PSS. Org. Electron. 13, 469-474 (2012).