Intrinsic quenching and stable crack propagation in hexagonal boron nitride

Ritchie, RO The conflicts between strength and tenacity. Nat. Mother. ten, 817-822 (2011).
Google Scholar
Ritchie, RO Mechanisms of Fatigue Crack Propagation in Metals, Ceramics, and Composites: Role of Crack Point Shielding. Mater. Sci. Ing. A 103, 15-28 (1988).
Google Scholar
Zhang, P. et al. Toughness at fracture of graphene. Nat. Common. 5, 3782 (2014).
Google Scholar
Becton, M. & Wang, X. Grain size dependence of mechanical properties in polycrystalline boron nitride: a computer study. Phys. Chem. Chem. Physical. 17, 21894-21901 (2015).
Google Scholar
Cammarata, RC Effects of surface and interface stresses in thin films. Program. Surf. Sci. 46, 1-38 (1994).
Google Scholar
Wang, SS et al. Atomically Sharp Crack Points in Single Layer MoS2 and their toughness increased by shortcomings defects. ACS Nano ten, 9831-9839 (2016).
Google Scholar
Lee, C., Wei, XD, Kysar, JW & Hone, J. Measurement of elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).
Google Scholar
Li, LH et al. Dielectric shielding in atomically thin boron nitride nanosheets. Nano Lett. 15, 218-223 (2015).
Google Scholar
Akinwande, D. et al. A review of the mechanics and mechanical properties of 2D materials â graphene and beyond. Extreme mechanic. Lett. 13, 42-77 (2017).
Google Scholar
Falin, A. et al. Mechanical properties of atomically thin boron nitride and role of interlayer interactions. Nat. Common. 8, 15815 (2017).
Google Scholar
Kumar, R. & Parashar, A. Improving the fracture toughness of h-BN monolayers via hydrogen passivation of a crack edge. Nanotechnology 28, 165702 (2017).
Google Scholar
Tabarraei, A. & Wang, X. A study of molecular dynamics of nanofracture in monolayer boron nitride. Mater. Sci. Ing. A 641, 225-230 (2015).
Google Scholar
Rakib, T., Mojumder, S., Das, S., Saha, S. & Motalab, M. Graphene and its elemental analogue: a view of the molecular dynamics of the fracture phenomenon. Phys. Rev. B 515, 67-74 (2017).
Ahmed, T., Procak, A., Hao, T. & Hossain, ZM Strong anisotropy of strength and toughness in defective hexagonal boron nitride. Phys. Rev. B 99, 134105 (2019).
Google Scholar
Yang, YC et al. Fragile 2D MoSe fracture2. Av. Mother. 29, 1604201 (2017).
Google Scholar
McMeeking, RM & Evans, AG Transformation-quench mechanics in brittle materials. Jam. Ceram. Share. 65, 242-246 (1982).
Google Scholar
Budiansky, B., Hutchinson, JW & Lambropoulos, JC Theory of the quenching continuum by dilating ceramic transformation. Int. J. Solids Struct. 19, 337-355 (1983).
Google Scholar
Levitas, VI & Samani, K. Effects of size and mechanics in surface-induced fusion of nanoparticles. Nat. Common. 2, 284 (2011).
Google Scholar
Diao, JK, Gall, K. & Dunn, ML Surface stress-induced phase transformation in metallic nanowires. Nat. Mother. 2, 656-660 (2003).
Google Scholar
Shenoy, VB, Reddy, CD, Ramasubramaniam, A. & Zhang, YW Edge stress-induced deformation of graphene sheets and nanoribbons. Phys. Rev. Lett. 101, 245501 (2008).
Google Scholar
Lu, GY et al. Synthesis of heterostructure in the single-layer plane of graphene and hexagonal boron nitride of high quality on Cu-Ni alloy. Av. Sci. 4, 1700076 (2017).
Google Scholar
Lu, GY et al. Synthesis of large hexagonal monocrystalline grains of boron nitride on Cu-Ni alloy. Nat. Common. 6, 6160 (2015).
Google Scholar
Song, L. et al. Large-scale growth and characterization of hexagonal atomic layers of boron nitride. Nano Lett. ten, 3209-3215 (2010).
Google Scholar
Deng, JK, Fampiou, I., Liu, JZ, Ramasubramaniam, A. & Medhekar, NV Edge stresses of non-stoichiometric edges in two-dimensional crystals. Appl. Phys. Lett. 100, 251906 (2012).
Google Scholar
Ly, TH, Zhao, J., Cichocka, MO, Li, LJ & Lee, YH Dynamic observations on the crack tip zone and stress corrosion of two-dimensional MoS2. Nat. Common. 8, 14116 (2017).
Google Scholar
Yankowitz, M. et al. Dynamic adjustment of the band structure of graphene moiré superlattices with pressure. Nature 557, 404-408 (2018).
Google Scholar
Levendorf, MP et al. Lateral heterostructures of graphene and boron nitride for atomically thin circuits. Nature 488, 627-632 (2012).
Google Scholar
Liu, Z. et al. Heterostructures in the plane of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnology. 8, 119â124 (2013).
Google Scholar
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Check out. 1, 16042 (2016).
Google Scholar
Hacopian, EF et al. Hardening of graphene by integration of carbon nanotubes. ACS Nano 12, 7901-7910 (2018).
Google Scholar
Buehler, MJ & Gao, HJ Dynamic instabilities of fractures due to local hyperelasticity at the bottom of cracks. Nature 439, 307-310 (2006).
Google Scholar
Buehler, MJ, Abraham, FF & Gao, HJ Hyperelasticity governs dynamic failure at a critical length scale. Nature 426, 141-146 (2003).
Google Scholar
Zhu, T. & Li, J. Ultra-resistant materials. Program. Mater. Sci. 55, 710-757 (2010).
Google Scholar
Griffith, AA VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163-198 (1921).
Google Scholar