Rapid fabrication method for 3D printed microfluidic devices

Whitesides, G. The Lab Finally Comes to the Chip!. lab chip 143125–3126 (2014).
Reyes, DR, Iossifidis, D., Auroux, PA & Manz, A. Total Analysis Micro Systems: 1—Introduction, Theory, and Technology. Anal. Chem. 742623–2636 (2002).
Kim, Y., Lee, J. & Park, S. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood. Micromachines 9472 (2018).
Nasseri, B. et al. Point-of-care microfluidic devices for the detection of pathogens. Biosens. Bioelectron. 117112-128 (2018).
Kitson, PJ, Rosnes, MH, Sans, V., Dragone, V. & Cronin, L. Configurable millifluidic and microfluidic reactionware devices 3D printed on a chip. lab chip 123267-3271 (2012).
Xi, J. et al. Development of a fast and high precision colorimetric device for the detection of organophosphate pesticides based on a microfluidic mixer chip. Micromachines 12290 (2021).
Li, F., Macdonald, NP, Guijt, RM, and Breadmore, MC Using Print Orientation to Tune Fluid Behavior in Microfluidic Chips Fabricated by Fused Deposition Modeling 3D Printing. Anal. Chem. 8912805–12811 (2017).
Mukherjee, P., Nebuloni, F., Gao, H., Zhou, J. & Papautsky, I. Rapid prototyping of soft lithography masters for microfluidic devices using dry-film photoresist in a non-clean room environment. Micromachines ten192 (2019).
Zhou, Z., Chen, D., Wang, X. & Jiang, J. Milling positive master for polydimethylsiloxane microfluidic devices: microfabrication and roughness issues. Micromachines 8287 (2017).
Konstantinou, D., Shirazi, A., Sadri, A. & Young, EWK Combination of hot stamping and milling for medium volume production of thermoplastic microfluidic devices. Sense. Actuators B Chem. 234209–221 (2016).
Wlodarczyk, KL et al. Rapid laser fabrication of microfluidic devices from glass substrates. Micromachines 9409 (2018).
Mahmud, MA, Blondeel, EJM, Kaddoura, M. & MacDonald, BD Characteristics of paper-based microfluidic devices fabricated by laser cutting: how big can they be?. Micromachines 9220 (2018).
Lee, UN et al. Fundamentals of rapid injection molding for microfluidic cell assays. lab chip 18496–504 (2018).
Amine, R. et al. 3D printed microfluidic devices. Biomanufacturing 8022001 (2016).
Tasoglu, S. & Folch, A. Editorial for the special issue on 3D printed microfluidic devices. Micromachines 9609 (2018).
Kotz, F. et al. Modeling of the fused deposition of polymethyl methacrylate microfluidic chips. Micromachines 11873 (2020).
Bhattacharjee, N., Urrios, A., Kang, S. & Folch, A. The next revolution in microfluidic 3D printing. lab chip 161720-1742 (2017).
Kim, YT, Castro, K., Bhattacharjee, N. & Folch, A. Numerical fabrication of selective porous barriers in microchannels using multi-material stereolithography. Micromachines 9125 (2018).
Kotz, F., Risch, P., Helmer, D. & Rapp, BE Highly fluorinated methacrylates for optical 3D printing of microfluidic devices. Micromachines 9115 (2018).
Gong, H., Bickham, BP, Woolley, AT & Nordin, GP Custom 3D printer and resin for 18 × 20 µm microfluidic flow channels. lab chip 172899-2909 (2017).
van der Linden, PJEM, Popov, AM & Pontoni, D. Accurate and fast 3D printing of microfluidic devices using wavelength selection on a DLP printer. lab chip 204128–4140 (2020).
Rehmani, MAA, Jaywant, SA & Arif, KM Study of Fabricated Microchannels Using Desktop Fusion Deposition Modeling Systems. Micromachinery 1214 (2021).
Pranzo, D., Larizza, P., Filippini, D. & Percoco, G. Extrusion-based 3D printing microfluidic devices for chemical and biomedical applications: a topical review. Micromachines 9374 (2018).
Gyimah, N., Scheler, O., Rang, T. & Pardy, T. Can 3D printing bring droplet microfluidics to every lab? A systematic review. Micromachinery 12339 (2021).
Peng, Y. et al. Direct ink writing combined with metal-assisted chemical etching of microchannels for microfluidic system applications. Sense. Actuators A Phys. 315112320 (2020).
Ching, T. et al. Fabrication of integrated microfluidic devices by direct ink writing (DIW) 3D printing. Sense. Actuators B Chem. 297126609 (2019).
Macdonald, PN et al. Comparison of microfluidic performance of three-dimensional (3d) printing platforms. Anal. Chem. 893858–3866 (2017).
Au, AK, Lee, W. & Folch, A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices. lab chip 141294-1301 (2014).
Wahid, S. et al. 3D printed microfluidic devices: facilitators and barriers. lab chip 161993-2013 (2016).
Yin, P. et al. Engineering the elimination of sacrificial materials in 3D printed microfluidics. Micromachines 9327 (2018).
Balakrishnan, HK et al. 3D Printing: An alternative approach to microfabrication with unprecedented design opportunities. Anal. Chem. 93350–366 (2021).
Salentijn, GI, Oomen, PE, Grajewski, M. & Verpoorte, E. 3D printing of fusion deposition modeling for the fabrication of (bio)analytical devices: procedures, materials and applications. Anal. Chem. 897053–7061 (2017).
Zeraatkar, M., Filippini, D. & Percoco, G. On the impact of manufacturing method on the performance of 3D printed mixers. Micromachines ten298 (2019).
Romanov, V. et al. FDM 3D printing of transparent, heat-resistant and high-pressure microfluidic devices. Anal. Chem. 9010450–10456 (2018).
Bressan, LP, Adamo, CB, Quero, RF, de Jesus, DP & da Silva, JAF A simple procedure to produce FDM-based 3D printed microfluidic devices with an integrated PMMA optical window. Anal. Methods 111014-1020 (2019).
Duong, LH & Chen, PC Simple and inexpensive production of 3D-printed hybrid microfluidic devices. Biomicrofluidics 13024108 (2019).
Fornells, E. et al. 3D printed integrated heating elements for microfluidic applications: analysis of ammonium in environmental water. Anal. Chem. Act 109894-101 (2020).
Ruiz, C. et al. Fabrication of hard and soft microfluidic devices using hybrid 3D printing. Micromachines 11567 (2020).
Nelson, MD, Ramkumar, N. & Gale, BK Flexible, Transparent, Sub-100 µm Microfluidic Channels with Fused Deposition Modeling 3D Printed Thermoplastic Polyurethane. J. Micromech. Microeng. 299 (2019).