Silver Lake Publishing

Main Menu

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management

Silver Lake Publishing

Header Banner

Silver Lake Publishing

  • Home
  • Swap
  • Price-Specie-Flow Mechanism
  • Poly-lateral
  • Complete information
  • Money Management
Poly-lateral
Home›Poly-lateral›Single fiber enables acoustic fabrics via nanoscale vibrations

Single fiber enables acoustic fabrics via nanoscale vibrations

By Allen Rodriquez
March 16, 2022
6
0
  • Delany, ME & Bazley, EN Acoustical properties of fibrous absorbent materials. Appl. Acoustic. 3105–116 (1970).

    Google Scholar

  • Tang, X. & Yan, X. Acoustic energy absorption properties of fibrous materials: a review. Comp. Part A 101360–380 (2017).

    CAS Google Scholar

  • Kozlov, AS, Baumgart, J., Risler, T., Versteegh, CPC, and Hudspeth, AJ Forces between bundled stereocilia minimize friction in the ear on a subnanometer scale. Nature 474376–379 (2011).

    CAS PubMed PubMed Central Google Scholar

  • Shi, J. et al. Smart microelectronic systems embedded in textiles for wearable applications. Adv. Mater. 321901958 (2019).

    Google Scholar

  • Abouraddy, AF et al. Towards multifunctional, multi-material fibers that see, hear, smell and communicate. Nat. Mater. 6336–347 (2007).

    ADS CAS PubMed Google Scholar

  • Yan, W. et al. Thermally stretched advanced functional fibers: new frontier of flexible electronics. Mater. Today 35168–194 (2020).

    CAS Google Scholar

  • Weng, W. et al. A path to intelligent system integration: from fiber design to device construction. Adv. Mater. 321902301 (2020).

    CAS Google Scholar

  • Chen, G., Li, Y., Bick, M., and Chen, J. Smart textiles for power generation. Chem. Tower. 1203668–3720 (2020).

    CAS PubMed Google Scholar

  • Khudiyev, T. et al. 100m long thermally stretched supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 322004971 (2020).

    CAS Google Scholar

  • Rein, M. et al. Diode fibers for fabric-based optical communications. Nature 560214-218 (2018).

    ADS CAS PubMed Google Scholar

  • Zhang, XA et al. Dynamic gating of infrared radiation in a textile. Science 363619–623 (2019).

    ADS CAS PubMed Google Scholar

  • Hsu, PC et al. Radiative cooling of the human body by nanoporous polyethylene textile. Science 3531019-1023 (2016).

    ADS CAS PubMed Google Scholar

  • Zhu, B. et al. Sub-ambient daytime radiative cooling textile made from nano-treated silk. Nat. Nanotechnology. 161342-1348 (2021).

    ADS CAS PubMed Google Scholar

  • Shi, X. et al. Large-area display textiles integrated into functional systems. Nature 591240-245 (2021).

    ADS CAS PubMed Google Scholar

  • Loki, G. et al. Digital electronics in fibers enable tissue-based machine learning inference. Nat. Common. 123317 (2021).

    ADS CAS PubMed PubMed Central Google Scholar

  • Egusa, S. et al. Multi-material piezoelectric fibers. Nat. Mater. 9643–648 (2010).

    ADS CAS PubMed Google Scholar

  • Chocat, N. et al. Piezoelectric fibers for conformal acoustics. Adv. Mater. 245327–5332 (2012).

    CAS PubMed Google Scholar

  • Fay, JP, Puria, S. & Steele, CR The discordant eardrum. proc. Natl Acad. Science. United States 10319743–19748 (2006).

    ADS CAS PubMed PubMed Central Google Scholar

  • Qu, Y. et al. Superelastic multi-material electronic and photonic fibers and devices by thermal stretching. Adv. Mater. 301707251 (2018).

    Google Scholar

  • Acosta, M. et al. BaTiO3piezoelectric: fundamentals, inventory and perspectives. Appl. Phys. Tower. 4041305 (2017).

    Google Scholar announcements

  • Setiadi, D., Binnie, TD, Regtien, P. & Wübbenhorst, M. Poling of VDF/TrFE copolymers using a stepwise method. In the 9th Int. Symp. Electrets (ISE) (eds Xia, Z. & Zhang, H.) 831–835 (IEEE, 1996).

  • Zhang, Y., Bowen, CR, and Deville, S. Ice matrix poly(vinylidene fluoride) ferroelectrets. soft material 15825–832 (2019).

    ADS CAS PubMed Google Scholar

  • Safari, A. & Akdoğan, EK (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).

  • Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofiber webs. Nat. Common. 711108 (2016).

    ADS CAS PubMed PubMed Central Google Scholar

  • Kang, S. et al. Transparent, conductive nanomembranes with orthogonal arrays of silver nanowires for speakers and microphones that can be attached to the skin. Science. Adv. 4eaas8772 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • Khan, A., Abas, Z., Soo Kim, H. & Oh, IK Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart master. Structure. 25053002 (2016).

    Google Scholar announcements

  • Kinsler, L., Frey, A., Coppens, A. & Sanders, J. Fundamentals of acoustics 4th edition (Wiley, 2000).

  • Yang, Y. & Gao, W. Portable and flexible electronics for continuous molecular monitoring. Chem. Soc. Tower. 481465-1491 (2019).

    CAS PubMed Google Scholar

  • Xiong, J., Chen, J. & Lee, PS Functional fibers and fabrics for soft robotics, wearable devices, and human-robot interface. Adv. Mater. 332002640 (2021).

    CAS Google Scholar

  • Loki, G. et al. IT fabrics. Question 2786–788 (2020).

    Google Scholar

  • Wang, W., Yu, A., Zhai, J., and Wang, ZL Recent advances in functional fiber and textile triboelectric nanogenerators: towards power generation and smart sensing. Adv. Mater fiber.3394–412 (2021).

    CAS Google Scholar

  • Ahmed, A., Hossain, MM, Adak, B. & Mukhopadhyay, S. Recent Advances in 2D MXene Integrated Smart Textile Interfaces for Multifunctional Applications. Chem. Mater. 3210296–10320 (2020).

    CAS Google Scholar

  • Cummer, SA, Christensen, J. & Alù, A. Sound control with acoustic metamaterials. Nat. Rev. Mater. 116001 (2016).

    Google Scholar announcements

  • Han, M et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 226–35 (2019).

    Google Scholar

  • Yang, G.-Z. et al. The great challenges of Scientific robotics. Science. Rob. 3ear7650 (2018).

    Google Scholar

  • Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Common. 12675 (2021).

    ADS CAS PubMed PubMed Central Google Scholar

  • Wang, K., Godfroid, T., Robert, D. & Preumont, A. Adaptive shell spherical reflector actuated by PVDF-TrFe thin-film strain actuators. Actuators ten7 (2021).

    Google Scholar

  • Wang, K., Alaluf, D., Rodrigues, G. & Preumont, A. Precision shape control of ultra-thin shells with deformation actuators. J.Appl. Calculation. Mech. 71130-1137 (2021).

    Google Scholar

  • Guo, S., Duan, X., Xie, M., Aw, KC & Xue, Q. Composites, fabrication, and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachinery 111076 (2020).

    PubMed Central Google Scholar

  • Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, TLB Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52197-206 (2018).

    Google Scholar CAS Announcements

  • Kim, H. et al. Increasing Piezoelectric Response in Functional Nanocomposites Using a Multi-Walled Carbon Nanotube Interface and Three-Dimensional Printing of Fusion Deposition Modeling. MS Common. 7960–966 (2017).

    CAS Google Scholar

  • Bodkhe, S., Turcot, G., Gosselin, FP, and Therriault, D. One-step solvent evaporation-assisted 3D printing of PVDF piezoelectric nanocomposite structures. ACS Appl. Mater. interfaces 920833–20842 (2017).

    CAS PubMed Google Scholar

  • Pi, Z., Zhang, J., Wen, C., Zhang, Z.-b, and Wu, D. Poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) thin-film flexible piezoelectric nanogenerator. Nano energy 733–41 (2014).

    CAS Google Scholar

  • Baur, C. et al. Improved piezoelectric performance from carbon fluoropolymer nanocomposites. J.Appl. Phys. 112124104 (2012).

    Google Scholar announcements

  • Zeng, R., Kwok, KW, Chan, HLW & Choy, CL Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states. J.Appl. Phys. 922674–2679 (2002).

    Google Scholar CAS Announcements

  • Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystal” vinylidene fluoride-trifluoroethylene copolymer films. J.Appl. Phys. 812760–2769 (1997).

    Google Scholar CAS Announcements

  • Wang, H., Zhang, QM, Cross, LE & Sykes, AO Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J.Appl. Phys. 743394–3398 (1993).

    Google Scholar CAS Announcements

  • Related posts:

    1. World Biosurgery Market Evaluation and Forecast (2018-2024) – The Courier
    2. International Biosurgery Market Evaluation and Forecast (2018-2024) – The Courier
    3. WITec Paper Award 2021 rewards three outstanding Labmate Online publications
    4. Men’s rugby A&M hopes to return to the field | Sports
    Tagsunited states

    Categories

    • Complete information
    • Money Management
    • Poly-lateral
    • Price-Specie-Flow Mechanism
    • Swap
    • TERMS AND CONDITIONS
    • PRIVACY AND POLICY