Single fiber enables acoustic fabrics via nanoscale vibrations

Delany, ME & Bazley, EN Acoustical properties of fibrous absorbent materials. Appl. Acoustic. 3105–116 (1970).
Google Scholar
Tang, X. & Yan, X. Acoustic energy absorption properties of fibrous materials: a review. Comp. Part A 101360–380 (2017).
Kozlov, AS, Baumgart, J., Risler, T., Versteegh, CPC, and Hudspeth, AJ Forces between bundled stereocilia minimize friction in the ear on a subnanometer scale. Nature 474376–379 (2011).
Shi, J. et al. Smart microelectronic systems embedded in textiles for wearable applications. Adv. Mater. 321901958 (2019).
Google Scholar
Abouraddy, AF et al. Towards multifunctional, multi-material fibers that see, hear, smell and communicate. Nat. Mater. 6336–347 (2007).
Yan, W. et al. Thermally stretched advanced functional fibers: new frontier of flexible electronics. Mater. Today 35168–194 (2020).
Weng, W. et al. A path to intelligent system integration: from fiber design to device construction. Adv. Mater. 321902301 (2020).
Chen, G., Li, Y., Bick, M., and Chen, J. Smart textiles for power generation. Chem. Tower. 1203668–3720 (2020).
Khudiyev, T. et al. 100m long thermally stretched supercapacitor fibers with applications to 3D printing and textiles. Adv. Mater. 322004971 (2020).
Rein, M. et al. Diode fibers for fabric-based optical communications. Nature 560214-218 (2018).
Zhang, XA et al. Dynamic gating of infrared radiation in a textile. Science 363619–623 (2019).
Hsu, PC et al. Radiative cooling of the human body by nanoporous polyethylene textile. Science 3531019-1023 (2016).
Zhu, B. et al. Sub-ambient daytime radiative cooling textile made from nano-treated silk. Nat. Nanotechnology. 161342-1348 (2021).
Shi, X. et al. Large-area display textiles integrated into functional systems. Nature 591240-245 (2021).
Loki, G. et al. Digital electronics in fibers enable tissue-based machine learning inference. Nat. Common. 123317 (2021).
Egusa, S. et al. Multi-material piezoelectric fibers. Nat. Mater. 9643–648 (2010).
Chocat, N. et al. Piezoelectric fibers for conformal acoustics. Adv. Mater. 245327–5332 (2012).
Fay, JP, Puria, S. & Steele, CR The discordant eardrum. proc. Natl Acad. Science. United States 10319743–19748 (2006).
Qu, Y. et al. Superelastic multi-material electronic and photonic fibers and devices by thermal stretching. Adv. Mater. 301707251 (2018).
Google Scholar
Acosta, M. et al. BaTiO3piezoelectric: fundamentals, inventory and perspectives. Appl. Phys. Tower. 4041305 (2017).
Setiadi, D., Binnie, TD, Regtien, P. & Wübbenhorst, M. Poling of VDF/TrFE copolymers using a stepwise method. In the 9th Int. Symp. Electrets (ISE) (eds Xia, Z. & Zhang, H.) 831–835 (IEEE, 1996).
Zhang, Y., Bowen, CR, and Deville, S. Ice matrix poly(vinylidene fluoride) ferroelectrets. soft material 15825–832 (2019).
Safari, A. & Akdoğan, EK (eds) Piezoelectric and Acoustic Materials for Transducer Applications (Springer, 2008).
Lang, C., Fang, J., Shao, H., Ding, X. & Lin, T. High-sensitivity acoustic sensors from nanofiber webs. Nat. Common. 711108 (2016).
Kang, S. et al. Transparent, conductive nanomembranes with orthogonal arrays of silver nanowires for speakers and microphones that can be attached to the skin. Science. Adv. 4eaas8772 (2018).
Khan, A., Abas, Z., Soo Kim, H. & Oh, IK Piezoelectric thin films: an integrated review of transducers and energy harvesting. Smart master. Structure. 25053002 (2016).
Kinsler, L., Frey, A., Coppens, A. & Sanders, J. Fundamentals of acoustics 4th edition (Wiley, 2000).
Yang, Y. & Gao, W. Portable and flexible electronics for continuous molecular monitoring. Chem. Soc. Tower. 481465-1491 (2019).
Xiong, J., Chen, J. & Lee, PS Functional fibers and fabrics for soft robotics, wearable devices, and human-robot interface. Adv. Mater. 332002640 (2021).
Loki, G. et al. IT fabrics. Question 2786–788 (2020).
Google Scholar
Wang, W., Yu, A., Zhai, J., and Wang, ZL Recent advances in functional fiber and textile triboelectric nanogenerators: towards power generation and smart sensing. Adv. Mater fiber.3394–412 (2021).
Ahmed, A., Hossain, MM, Adak, B. & Mukhopadhyay, S. Recent Advances in 2D MXene Integrated Smart Textile Interfaces for Multifunctional Applications. Chem. Mater. 3210296–10320 (2020).
Cummer, SA, Christensen, J. & Alù, A. Sound control with acoustic metamaterials. Nat. Rev. Mater. 116001 (2016).
Han, M et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 226–35 (2019).
Google Scholar
Yang, G.-Z. et al. The great challenges of Scientific robotics. Science. Rob. 3ear7650 (2018).
Google Scholar
Huang, Y. et al. Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals. Nat. Common. 12675 (2021).
Wang, K., Godfroid, T., Robert, D. & Preumont, A. Adaptive shell spherical reflector actuated by PVDF-TrFe thin-film strain actuators. Actuators ten7 (2021).
Google Scholar
Wang, K., Alaluf, D., Rodrigues, G. & Preumont, A. Precision shape control of ultra-thin shells with deformation actuators. J.Appl. Calculation. Mech. 71130-1137 (2021).
Google Scholar
Guo, S., Duan, X., Xie, M., Aw, KC & Xue, Q. Composites, fabrication, and application of polyvinylidene fluoride for flexible electromechanical devices: a review. Micromachinery 111076 (2020).
Kim, H., Fernando, T., Li, M., Lin, Y. & Tseng, TLB Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. J. Compos. Mater. 52197-206 (2018).
Kim, H. et al. Increasing Piezoelectric Response in Functional Nanocomposites Using a Multi-Walled Carbon Nanotube Interface and Three-Dimensional Printing of Fusion Deposition Modeling. MS Common. 7960–966 (2017).
Bodkhe, S., Turcot, G., Gosselin, FP, and Therriault, D. One-step solvent evaporation-assisted 3D printing of PVDF piezoelectric nanocomposite structures. ACS Appl. Mater. interfaces 920833–20842 (2017).
Pi, Z., Zhang, J., Wen, C., Zhang, Z.-b, and Wu, D. Poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) thin-film flexible piezoelectric nanogenerator. Nano energy 733–41 (2014).
Baur, C. et al. Improved piezoelectric performance from carbon fluoropolymer nanocomposites. J.Appl. Phys. 112124104 (2012).
Zeng, R., Kwok, KW, Chan, HLW & Choy, CL Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states. J.Appl. Phys. 922674–2679 (2002).
Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of “single crystal” vinylidene fluoride-trifluoroethylene copolymer films. J.Appl. Phys. 812760–2769 (1997).
Wang, H., Zhang, QM, Cross, LE & Sykes, AO Piezoelectric, dielectric, and elastic properties of poly(vinylidene fluoride/trifluoroethylene). J.Appl. Phys. 743394–3398 (1993).