Vertical MoS2 transistors with gate lengths less than 1 nm

Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 59143–53 (2021).
Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 116052 (2016).
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573507-518 (2019).
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Monolayer MoS2 transistors. Nat. Nanotechnology. 6147-150 (2011).
Desai, SB et al. MoS2 transistors with gate lengths of 1 nanometer. Science 35499-102 (2016).
Moore, GE Stacking more components on integrated circuits. proc. IEEE 8682–85 (1998).
Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated Nanoelectronics for the Future. Nat. Mater. 6810–812 (2007).
Lundstrom, Mr. Moore’s Law Forever? Science 299210-211 (2003).
Migita, S., Morita, Y., Matsukawa, T., Masahara, M. & Ota, H. Experimental demonstration of ultrashort (3 nm) channel junctionless FETs using atomically sharp V-grooves on SOI. IEEE Trans. Nanotechnology. 13208-215 (2014).
Novoselov, KS et al. Electric field effect in atomically thin carbon films. Science 306666–669 (2004).
Deng, N et al. Black phosphorus junctions and their electrical and optoelectronic applications. J. Semicond. 42081001 (2021).
Kim, KS et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457706–710 (2009).
Lee, S., Sohn, J., Jiang, Z., Chen, H.-Y. & Wong, H.-SP Resistive metal-oxide memory using graphene-edge electrodes. Nat. Common. 68407 (2015).
Sohn, J., Lee, S., Jiang, Z., Chen, H. & Wong, HP Atomically thin graphene planar electrode for 3D RRAM. In IEEE International Electronic Devices Meeting (IEDM) 2014 5.3.1–5.3.4 (IEEE, 2014).
Wu, F. et al. A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv. Electron. Mater. 72100543 (2021).
Yoon, Y., Ganapathi, K. & Salahuddin, S. How good is single layer MoS2 transistors be? Nano Lett. 113768–3773 (2011).
Dunlap, WC & Watters, RL Direct measurement of the dielectric constants of silicon and germanium. Phys. Tower. 921396–1397 (1953).
Xie, L. et al. Ultrashort-channel single-layer MoS in contact with graphene2 transistors. Adv. Mater. 291702522 (2017).
Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnology. 15545-557 (2020).
Yu, Z et al. Achieving phonon-limited carrier transport at room temperature in monolayer MoS2 by dielectric and carrier shielding. Adv. Mater. 28547-552 (2016).
Tseng, AA, Kuan, C., Chen, CD & Ma, KJ Electron Beam Lithography in Nanoscale Manufacturing: Recent Developments. IEEE Trans. Electron. Factory packaging. 26141-149 (2003).
Sinha, S., Cline, B., Yeric, G., Chandra, V. & Cao, Y. 7nm design benchmarking with FinFET predictive technology models. In proc. 2012 ACM/IEEE International Sympposium on Low Power Electrons and Design 15–20 (Association for Computing Machinery, 2012).
Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H. & Arimoto, Y. Scaling theory for dual-gate SOI MOSFETs. IEEE Trans. Electronic appliances 402326–2329 (1993).
Xuejue, H. et al. FinFET under 50 nm: PMOS.In International Electron Devices Meeting (IEDM) Technical Brief 67–70 (IEEE, 1999).
Yang-Kyu, C. et al. Sub-20nm FinFET CMOS technologies. In International Electron Devices Meeting (IEDM) Technical Brief 11.19.11–11.19.14 (IEEE, 2001).
Bin, Y. et al. FinFET scaling to 10nm gate length. In International Electron Devices Meeting (IEDM) Technical Brief 10.2.1-10.2.4 (IEEE, 2002).
Fu-Liang, Y. et al. 5nm Gate Nanowire FinFET. In proc. VLSI Technology Symposium, Digest of Technical Papers 196–197 (IEEE, 2004).
Lee, H. et al. Versatile sub-5nm gated FinFET for ultimate scaling. In proc. VLSI Technology Symposium, Digest of Technical Papers 58–59 (IEEE, 2006).
Yeo, KH et al. Gate-all-around (GAA) twin silicon nanowire MOSFET (TSNWFET) with 15nm gate length and 4nm radius nanowires. In International Meeting on Electronic Devices (IEDM) 1–4 (IEEE, 2006).
Loubet, N. et al. Stacked nanosheet gate transistor to allow scaling beyond FinFET. In VLSI Technology Symposium T230-T231 (IEEE, 2017).
Franklin, AD et al. Sub-10nm carbon nanotube transistor. Nano Lett. 12758–762 (2012).
Cao, Q., Tersoff, J., Farmer, DB, Zhu, Y. & Han, S.-J. Carbon nanotube transistors scaled for 40 nanometer footprint. Science 3561369-1372 (2017).
Qiu, C. et al. Scaling complementary carbon nanotube transistors to 5 nm gate lengths. Science 355271-276 (2017).
English, CD, Smithe, KKH, Xu, RL & Pop, E. Approach to ballistic transport in single-layer MoS2 transistors with 10 nm self-aligned top gates. In International Meeting on Electronic Devices (IEDM) 5.6.1–5.6.4 (IEEE, 2016).
Jiang, J. et al. Ultrashort vertical channel van der Waals semiconductor transistors. Adv. Science. 71902964 (2020).
Zou, X., Liu, L., Xu, J., Wang, H. and Tang, W.-M. Layered MoS2 field-effect transistors with a vertical channel smaller than 10 nm. ACS Appl. Mater. Inter. 1232943–32950 (2020).
International Devices and Systems Roadmap (IRDS™) 2021 Edition (IEEE, 2021); https://irds.ieee.org/editions/2021
Bohr, M. A 30-year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circuits Soc. Newsl. 1211-13 (2007).